By 2020, California aims to use 33% of energy from renewable sources. With the deadline nearing, researchers from all over the state are trying to identify new variable options. Solar energy is an attractive source, but it has to be converted into a storable form for widespread adoption. In a new study published in ACS Central Science, researchers have described the development of nanowires from multiple metal oxides that could address the problem.
A team of researchers from North Carolina State University have determined a new phase of boron nitride (Q-BN), which plays a vital role in both electronic displays and manufacturing tools. The team have come up with a new method for forming cubic boron nitride (c-BN) at ambient air pressure and temperatures. This method is used for a wide range of application, such as the develop,emt modern power grid technologies.
Karlsruhe Institute of Technology (KIT) scientists have developed the smallest-ever 3D lattice structure, measuring less than 200 nm in diameter and 1 µm in length. Their size is smaller by a factor of 5, in comparison with equivalent metamaterials.
A new technique to restrict the growth of cancerous tumors has been developed by a group of engineers from the Washington University in St. Louis. The group used nanoparticles from the core ingredient in the commonly used antacid tablets.
An international team of physicists, guided by the University of Arkansas (U of A), has produced an artificial material having a structure similar to that of graphene. Graphene is one of the lightest, strongest, and most conductive materials known.
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
A team of University of Arkansas at Little Rock researchers is exploring ways to change the world with the help of tiny, incredibly strong materials.
Rechargeable lithium metal batteries have been known for four decades to offer energy storage capabilities far superior to today’s workhorse lithium-ion technology that powers our smartphones and laptops. But these batteries are not in common use today because, when recharged, they spontaneously grow treelike bumps called dendrites on the surface of the negative electrode.
Nagase & Co., Ltd. and Nagase ChemteX Corporation (herein after jointly called Nagase), a major global group providing marketing, sales and manufacturing of specialty and electronics materials for semiconductor, display and other electronics applications; and Inkron, a technology leader in printed siloxane based nano-ink and paste materials for the display, semiconductor and printed electronics industries, today announced the start of development and manufacturing collaboration for the area of OLED and on-cell touch sensor materials.
EPFL scientists build the most sensitive carbon nanotube-based photodetector to date. The material is sensitized with CN3NH3PbI3 perovskite nanowires, which propel its responsivity by almost seven orders of magnitude.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.