Three New Research Papers Published by Users of Anasys nanoIR

Anasys Instruments reports on three user groups who have published peer reviewed papers where nanoIR is being applied to look at characterization challenges in semiconductors, polymers and healthcare.

There have been several recent exciting publications by nanoIR users in a number of growing applications areas. These include plasmonics, health care, fuel cell membranes and polymer nanostructures. Three of these publications are reported here.

Nanoscale Imaging of Plasmonic Hot Spots and Dark Modes with the Photothermal-Induced Resonance Technique. The lead author is Dr Andrea Centrone from NIST, USA. In this publication from NIST, the AFM-IR technique is applied for the first time to image the dark plasmonic resonance of gold asymmetric split ring resonators (A-SRRs) in the mid-infrared (IR) spectral region with nanoscale resolution. Additionally, the chemically specific PTIR signal is used to map the local absorption enhancement of poly(methyl methacrylate) coated on A-SRRs, revealing hot spots with local enhancement factors up to ≈30.

Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an AFM to directly detect absorbed light from a tunable IR laser source. The lead author is Dr Gustavo Luengo of L'Oréal, France. Samples of normal and delipidized stratum corneum were studied in this work by L'Oréal together with researchers at Anasys Instruments. This shows substantially less long-chain CH2 -stretching IR absorption band intensity than in normal skin. AFM-IR images that compare absorbance values at 2930/cm (lipid) and 3290/cm (keratin) suggest that regions of higher lipid concentration are located at the perimeter of corneocytes in the normal stratum corneum.

Morphology of water transport channels and hydrophobic clusters in Nafion from high spatial resolution AFM-IR spectroscopy and imaging. The lead author is Dr Tadashi Awatani from Nissan ARC in Japan. The nanoscale distribution of distinctly different water molecules within a perfluorinated sulfonic acid polymer Nafion film has been chemically imaged for the first time. Chemical imaging results have revealed ionic bound water molecules, iH2O, (3211 cm-1) that were clustered in domains, while the hydrated free bulk-like water molecules, bH2O, (3482 cm-1) were found within transportable channels that linked these clusters. A direct visual insight of the Nafion water structure given by this method will enlighten the understanding of the present proton exchange mechanism that is essential for the development of more efficient fuel cells.

AFM-IR is a product from Anasys Instruments, Inc. For more information on AFM-IR and its applications, please visit the Anasys web site:

About Anasys Instruments

Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Most recently, Anasys is proud to introduce the breakthrough Lorentz Force Contact Resonance, which pioneers the field of wideband nanomechanical spectroscopy. For further details, please visit


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Anasys Instruments. (2019, February 11). Three New Research Papers Published by Users of Anasys nanoIR. AZoNano. Retrieved on February 22, 2024 from

  • MLA

    Anasys Instruments. "Three New Research Papers Published by Users of Anasys nanoIR". AZoNano. 22 February 2024. <>.

  • Chicago

    Anasys Instruments. "Three New Research Papers Published by Users of Anasys nanoIR". AZoNano. (accessed February 22, 2024).

  • Harvard

    Anasys Instruments. 2019. Three New Research Papers Published by Users of Anasys nanoIR. AZoNano, viewed 22 February 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type