Posted in | News | Nanomaterials

Cambridge Nanotherm Receives 2013 European Frost & Sullivan Award for Technology Innovation

Based on its recent research on the thermal management solutions for the LED lighting market, Frost & Sullivan presents Cambridge Nanotherm with the 2013 European Frost & Sullivan Award for Technology Innovation. Trends in the light emitting diode (LED) market point to a shift from costly ceramic–based substrates to basic aluminium-based substrates for better thermal management.

This focus on thermal management solutions has highlighted the role played by heat sinks, and their shortcomings. In this environment, Cambridge Nanotherm has risen to prominence with its novel Chip on Heat Sink (CoHS) technology, which not only dissipates heat more efficiently, but also reduces the footprint of the heat sink.

Click here for the full multimedia experience of this release - http://bit.ly/1bUd8NQ

Cambridge Nanotherm's CoHS technology employs the company's innovative and patented electrochemical process to generate the nano-ceramic dielectric layer of Aluminium oxide. This dielectric layer is formed directly on the metal heat sink, which is made of Aluminium, thus creating an insulating layer which has high dielectric strength as well as excellent thermal conductivity.

Competing solutions use either fully Aluminium oxide or Aluminium nitride–based heat sinks, which employ costly manufacturing processes. Cambridge Nanotherm uses Aluminium, and its nano-ceramic coating process is not only cost effective but also results in a heat sink with thermal conductivity levels that are approaching that of Aluminium nitride–based heat sinks.

The company's technology helps lower the die operating temperature by up to 22 degree Celsius. This will enable the application of higher power to the LED, thus increasing its light output. Alternatively, running the LED die at cooler temperatures also offers higher reliability to customers. LED manufacturers claim that the lifetime of their products ranges anywhere between 15 and 20 years. Cambridge Nanotherm's technology enables LED manufacturers achieve prolonged lifetime for their products.

Apart from LED lighting, Cambridge Nanotherm's technology can be applied in concentrated photovoltaics, unlike its peers who use aluminium nitride–based heat sinks which have limited application due to the high cost associated with aluminium nitride. Other future applications for Cambridge Nanotherm's technology include UV curing and water purification, RF circuitry, resistive heating, thermo-electric cooling and semiconductor packaging.

"Cambridge Nanotherm is also working toward improvements in its technology by adopting screen-printed or thin film metallization on ceramic-coated aluminium," said Frost & Sullivan Research Analyst Archana Srinivasan. "Another advantage of the nanoceramic coating is that it can be applied to any aluminium-based heat sink of varied shape, size, or alloy, as the application or product demands."

Cambridge Nanotherm's technology, by means of eliminating thermal resistances, can reduce the number of components in an LED system while maintaining light output. Its smaller footprint not only reduces the weight and assembly costs of the system, but also slashes its shipping costs, which ultimately translates to lower prices of the LED products.

LED light sources are gaining in popularity among household and industrial lighting applications mainly because of their energy-saving capabilities. Cambridge Nanotherm's technology helps LED manufacturers reduce the device cost and multiply the energy-saving capacity of LED lighting devices.

"Another feature of Cambridge Nanotherm's technology is that it is made of 100 percent recyclable material; its penetration into the market will not only help save energy but also reduce carbon footprint," noted Srinivasan. "In response to companies' preference for green technologies, Cambridge Nanotherm has replaced conventional CoHS devices with more efficient materials and manufacturing processes."

Each year, Frost & Sullivan presents this award to the company that has demonstrated uniqueness in developing a technology, which significantly impacts both the functionality and the customer value of new products and applications. The award lauds the relevance of the innovation to the industry.

Frost & Sullivan's Best Practices Awards recognize companies in a variety of regional and global markets for demonstrating outstanding achievement and superior performance in areas such as leadership, technological innovation, customer service, and strategic product development. Industry analysts compare market participants and measure performance through in-depth interviews, analysis, and extensive secondary research in order to identify best practices in the industry.

Source: http://www.frost.com/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Frost and Sullivan. (2019, February 11). Cambridge Nanotherm Receives 2013 European Frost & Sullivan Award for Technology Innovation. AZoNano. Retrieved on April 25, 2024 from https://www.azonano.com/news.aspx?newsID=29054.

  • MLA

    Frost and Sullivan. "Cambridge Nanotherm Receives 2013 European Frost & Sullivan Award for Technology Innovation". AZoNano. 25 April 2024. <https://www.azonano.com/news.aspx?newsID=29054>.

  • Chicago

    Frost and Sullivan. "Cambridge Nanotherm Receives 2013 European Frost & Sullivan Award for Technology Innovation". AZoNano. https://www.azonano.com/news.aspx?newsID=29054. (accessed April 25, 2024).

  • Harvard

    Frost and Sullivan. 2019. Cambridge Nanotherm Receives 2013 European Frost & Sullivan Award for Technology Innovation. AZoNano, viewed 25 April 2024, https://www.azonano.com/news.aspx?newsID=29054.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.