Posted in | News | Nanomaterials

Tiny Catalysts Used for Industrial-Scaled Environmental Remediation Efforts may Become Unstable

New research is showing that some tiny catalysts being considered for industrial-scaled environmental remediation efforts may be unstable during operation.

Chemists from the University of Waterloo studied the structures of complex catalysts known as "nanoscale electrocatalysts" and found that they are not as stable as scientists once thought. When electricity flows through them during use, the atoms may rearrange. In some cases, the researchers found, electrocatalysts degrade completely.

Understanding why and how this rearrangement and degradation happens is the first step to using these nanoscale electrocatalysts in environmental remediation efforts such as removing atmospheric carbon dioxide and groundwater contaminants and transforming them into higher-value products such as fuels.

"Current electrocatalysts rely on complex nanoscale structures in order to optimize their efficiency," said Anna Klinkova, a professor in Waterloo's Department of Chemistry. "What we found, however, is that the superior performance of these complex nanomaterials often come at a cost of their gradual structural degradation, as there is a trade-off between their effectiveness and stability."

Klinkova and her team discovered that the rearrangement of atoms in the catalyst depended on the type of metal, structural shape, and the reaction conditions of the catalyst.

They identified two reasons for the rearrangements. Some small molecules can temporarily attach to the surface of the catalyst and reduce the energy needed for an atom to move across the surface. In other cases, narrow areas within the catalyst concentrate the electron's current, causing the metal atoms to displace via a process called electromigration.

Electromigration has been previously identified in microelectronics, but this is the first time it has been connected to nanoscale catalysts.

These findings establish a framework for assessing structural stability and mapping the changing geometry of nanoscale catalysts, which is an important step to designing better catalysts in the future.

"These structural effects could be used as one of the design rules in future catalyst development to maximize their stability," Klinkova said. "You could also purposefully induce reconstruction to a different structure that becomes active as the reaction starts."

The study, Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts, was recently published in the journal Nature Catalysis.

Source: https://uwaterloo.ca/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.