MXene Membrane Has Promising Application for Osmotic Energy Extraction

The recent study in the journal ACS Nano, a lamellar-structured barrier built of nanoporous Ti3C2Tx MXene layers, demonstrated a continuous increase in penetration and ionic sensitivity exceeding their natural trade-off.

MXene Membrane Has Promising Application for Osmotic Energy Extraction

Study: Porous Ti3C2Tx MXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting. Image Credit: Peter Bocklandt/

Threats of Climate Change

Climate change and global warming are increasingly becoming significant issues, affecting many parts of society.

Fossil fuels are widely regarded as the principal cause of this dramatic environmental degradation. In this regard, sustainable green energy sources have been intensively researched to fulfill the expanding world's energy needs while reducing environmental damage.

Among the available sustainable green sources, osmotic energy generated by the blending of aqueous systems with a gradient has received a lot of interest in the last decade as an environmentally friendly form of energy.

In theory, harvesting osmotic energy reflects the Gibbs free energy of blending, where induced charges may be effectively foraged utilizing reverse electrodialysis (RED). The latter has lately seen tremendous development because of breakthroughs in nanocrystalline barrier production.

Ion-exchange barriers with selective electrostatic interactions transport play an important part in energy transfer in a RED operation; nevertheless, traditional selectively permeable have poor energy capacity owing to their high resistance.

Importance of Nanomaterials as Alternative Energy Source

To present, a diverse range of nanostructures, notably metal-organic frameworks (MOF), boron nitride nanotubes (BNNT), and nanoporous molybdenum disulfide, have been used to capture osmotic differential radiation (MoS2).

The microscopic apertures or passageways in these nanomaterials have the potential to improve both ionic conductivity and energy discrimination. This efficiency is linked to the thin films layer's exceptionally high ionic conductivity.

Nonetheless, despite exceeding traditional ion-exchange barriers in power transformation, various technological challenges to its production still prevent its implementation to a complete system.

Utilization of Two-Dimensional Layered Membranes

Two-dimensional (2D) multilayered barriers, which may be produced by layering 2D materials, have been shown to offer a sustainable option to harvesting ionic energies in this respect. Small hole 2D capillaries produced between adjoining layers provide sub-nanometer resolution fluid-flow passageways, allowing surface energy-driven ion transport to occur.

Despite the growing attentiveness in configurable membranous vesicles for blue power generation, a reasonable concept design is still intended to solve numerous intermingling obstacles, such as the sustained ion-diffusion passageways and deduced stagnant fluid flow transmission caused by restacking and amalgamation of 2D layers.

Advantages of 2-D Nanomaterials

Corrugated apertures in the particle surface of nanostructured 2D sheets can efficiently provide shorter and consistent charges transportation systems for quicker ion transport through laminae nanostructures.

A standard nanostructured 2D material provides an appealing substrate for developing ion passageways offering highly selective and quick transit under saltwater gradients, profiting from the characteristics of both 2D-layered and nanoporous designs. Furthermore, the nanostructured sheet efficiently eliminates the restocking issue when constructing barriers thick enough to assure remarkable mechanical durability.

MXene (a novel family of metal oxides carbide, nitrides, or both) offers an interesting foundation for fibrillar screens among current 2D materials.

MXenes' complex structure, along with its interface hydrophilic nature, may trap water vapor between those nearby layers, producing fluid flow passageways for ionic and molecular transport. As a result, MXene screens can generate densely linked interatomic nano capillaries with sub-nanometer characteristics.

Ti3C2Tx (by far the most researched MXene), where Tx designates a set of interface termination molecules (Cl, F, OH), has recently proved its ability for capillary harvesting energy.

However, using perforated MXene sheets might boost the obtained ionic energy capacity even further. In this situation, the erased holes surrounded by surface-terminated organic compounds might act as a calcium channel while maintaining ion selection. As a result, the nanoconfined interior pores may lead to a rise in produced power.

Findings of the Study

This work constructed nanostructured fibrillar Ti3C2Tx MXene screens and proved its usage in high-performance osmotic power generation.

Through selective wiping with the moderate acid oxidizer H2SO4, nanoscale holes may be punctured into 2D Ti3C2Tx MXene layers. The carved holes, which act as a linked calcium channel, have resulted in high hydraulic strength, exceeding both the pristine Ti3C2Tx membrane and other commonly available ion-exchange films.

In the existence of an unstructured cellular membrane, the augmentation is significantly related to simultaneously increased sensitivity and selectivity. In addition, the nanostructured Ti3C2Tx MXene barrier has demonstrated outstanding long-term structural strength and steady energy collection capability in liquid electrolytes.

These discoveries provide a practical method for controlling the transport of ions through MXene-based barriers and greatly improve their sustainability for microfluidics osmotic energy production.

Continue reading: Nanoporous Membranes Can Help Blue Energy Become a Reality: Here's How.


Hong, S., El-Demellawi, J. K., et al. (2022). Porous Ti3C2Tx MXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting. ACS Nano. Available at:

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Shaheer Rehan

Written by

Shaheer Rehan

Shaheer is a graduate of Aerospace Engineering from the Institute of Space Technology, Islamabad. He has carried out research on a wide range of subjects including Aerospace Instruments and Sensors, Computational Dynamics, Aerospace Structures and Materials, Optimization Techniques, Robotics, and Clean Energy. He has been working as a freelance consultant in Aerospace Engineering for the past year. Technical Writing has always been a strong suit of Shaheer's. He has excelled at whatever he has attempted, from winning accolades on the international stage in match competitions to winning local writing competitions. Shaheer loves cars. From following Formula 1 and reading up on automotive journalism to racing in go-karts himself, his life revolves around cars. He is passionate about his sports and makes sure to always spare time for them. Squash, football, cricket, tennis, and racing are the hobbies he loves to spend his time in.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Rehan, Shaheer. (2022, January 13). MXene Membrane Has Promising Application for Osmotic Energy Extraction. AZoNano. Retrieved on April 17, 2024 from

  • MLA

    Rehan, Shaheer. "MXene Membrane Has Promising Application for Osmotic Energy Extraction". AZoNano. 17 April 2024. <>.

  • Chicago

    Rehan, Shaheer. "MXene Membrane Has Promising Application for Osmotic Energy Extraction". AZoNano. (accessed April 17, 2024).

  • Harvard

    Rehan, Shaheer. 2022. MXene Membrane Has Promising Application for Osmotic Energy Extraction. AZoNano, viewed 17 April 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.