Posted in | News | Nanosensors | Graphene

Eco-Friendly Graphene Ink Could Advance Strain Sensors

An article available recently as a pre-proof in the Journal of Materials Research and Technology demonstrated the viability of a printable conducting ink based on an aqueous emulsion for application in strain sensors and flexible electronic devices.

Eco-Friendly Graphene Ink Could Advance Strain Sensors

Study: Polylactic acid-Graphene Emulsion Ink based Conductive Cotton Fabrics. Image Credit: Rost9/

The Growing Demand for Biocompatible Wearable Electronics

Wearable technologies are rapidly becoming indispensable in the area of elastic electronic devices. As a result, there is an increasing desire for pliable, ultralight, easy-to-manufacture, low-cost, biologically compatible, and degradable electronic equipment.

Wearable elastic hybrid devices are extensively used for continual medical observation, diagnosis, and human-machine interactions, with research focusing on non-irritating and benign substances and inexpensive procedures.

Biocompatibility and biodegradability in functional electronic substances are critical properties for meeting numerous healthcare and environmental directives and minimizing the dangers connected with managing electronic waste. This is still the most challenging obstacle, and efforts are being made to address it via green electronics.

The Advantages of Using Bio-based Polymers

Bio-based substances such as hydrogels, regenerated silk, and polylactic acid (PLA) have the potential to revolutionize medical monitoring systems such as sensing devices and wearable electronics. Due to their biocompatible and environmentally friendly nature, sustainability, low expenses, and solution processability, bio-based polymers provide exciting possibilities for pliable electronic systems.

Conducting inks made from bio-based composites may be administered directly to any substrate through rod coating, spraying, or solution immersion. By producing a carbon enriched membrane on one of the sides of the films, the team was able to reduce electrical resistance by using bio-based carbon fillers.

At smaller quantities of bio-based carbon, this layer aids in the formation of the conducting system. The researchers discovered that, while the resultant deformations following tension did not fully repair due to the relaxed silk fibroin links, these substances are suitable for expendable ecologically friendly strain gauges.

Metallic nanoparticles and semiconducting metallic oxides, in addition to carbonaceous nanomaterials, are widely employed in pliable electronic devices. Despite substantial advances in recent times, their inherent mechanical qualities, considerable expenses, and questions about biological degradation and compatibility restrict their mainstream usage.

Finding the Right Solvent for the Job

The usage of toxic solvents must be reduced for bio-based polymeric materials to monopolize pliable electronics. This may be accomplished by employing halogen-free, biodegradable, and benign solvents for solution processing in electronic material synthesis. Recommendations for selecting a suitable solvent include high biopolymer solubility, minimal expenses, reduced risks, and reduced environmental effects.

Nonetheless, identifying a suitable ecologically benign solvent remains difficult. Stable PLA-based emulsions, such as oil-in-water, may be used to encapsulate functional electronic components like carbon nanofibers or graphene. Unfortunately, no prior research has been conducted on PLA-based emulsions employing green solvents to create electrically conducting inks.

SEM images of the top-view of (a) pristine cotton fabric and samples coated with conductive inks, particularly, (b) sample PLA0.5, (c) PLA1.0 and (d) PLA1.5. No hot pressing is applied. The inset SEM images illustrate the cross-sectional view of the respective samples. ©  Najafi, M., Zahid, M., Ceseracciu, L., Safarpour, M., Athanassiou, A., & Bayer, I. S. (2022).

Developing a Biocompatible Conductive Ink

In this study, the researchers introduced an oil-water emulsion PLA-graphene-based printable conducting ink that may be utilized to develop functional coverings in consumer electronics and medical diagnostics. Water as well as biodegradable solvents, such as anisole, were used to create the emulsions. The inks were created by emulsification of various quantities of PLA as a binding agent. Inks were rod-coated over the textiles, reducing waste formation.

The emulsion and ink were studied using dynamic light scattering and an optical microscope. The results revealed a well-distributed oil-in-water emulsion containing scattered PLA and graphene nanoplatelets (GNPs).

Through the rod coating process, the inks were utilized to coat materials. Their morphological structure indicated that inks with a PLA:GnPs proportion of 1:1 coated the textiles the most uniformly, producing the greatest conductance and mechanical qualities when compared to the other inks created.


The findings indicated that the specimens' electric conductance was increased by a factor of two after being subjected to a hot press treatment. Moreover, the hot-pressed specimens demonstrated improved mechanical characteristics owing to greater PLA binder immersion into the weave.

Even after being subjected to several stretch-release rounds in strain tests, covered specimens maintained electric conductance. The breakdown of the conducting networks created by GnPs might account for the reduction in electric conductance reported towards the conclusion of the 100-cycle strain test. Printed inks were also resistant to abrasion and washing while retaining their conductance.

This environmentally friendly polymeric ink might be employed as a strain gauge in the conversion of some electronic modules to biodegradable equivalents.


Najafi, M., Zahid, M., Ceseracciu, L., Safarpour, M., Athanassiou, A., & Bayer, I. S. (2022). Polylactic acid-Graphene Emulsion Ink based Conductive Cotton Fabrics. Journal of Materials Research and Technology. Available at:

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Shaheer Rehan

Written by

Shaheer Rehan

Shaheer is a graduate of Aerospace Engineering from the Institute of Space Technology, Islamabad. He has carried out research on a wide range of subjects including Aerospace Instruments and Sensors, Computational Dynamics, Aerospace Structures and Materials, Optimization Techniques, Robotics, and Clean Energy. He has been working as a freelance consultant in Aerospace Engineering for the past year. Technical Writing has always been a strong suit of Shaheer's. He has excelled at whatever he has attempted, from winning accolades on the international stage in match competitions to winning local writing competitions. Shaheer loves cars. From following Formula 1 and reading up on automotive journalism to racing in go-karts himself, his life revolves around cars. He is passionate about his sports and makes sure to always spare time for them. Squash, football, cricket, tennis, and racing are the hobbies he loves to spend his time in.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Rehan, Shaheer. (2022, May 02). Eco-Friendly Graphene Ink Could Advance Strain Sensors. AZoNano. Retrieved on April 19, 2024 from

  • MLA

    Rehan, Shaheer. "Eco-Friendly Graphene Ink Could Advance Strain Sensors". AZoNano. 19 April 2024. <>.

  • Chicago

    Rehan, Shaheer. "Eco-Friendly Graphene Ink Could Advance Strain Sensors". AZoNano. (accessed April 19, 2024).

  • Harvard

    Rehan, Shaheer. 2022. Eco-Friendly Graphene Ink Could Advance Strain Sensors. AZoNano, viewed 19 April 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.