Reviewing NEMS Resonators Based on Low-Dimensional Materials

Low-dimensional materials (LDMs) have gained significant prominence in nanoelectromechanical system (NEMS) resonators because of their exotic physical, photonic, and electronic characteristics augmented by exceptionally high surface-to-volume ratios and quantum restrictions.

Reviewing NEMS Resonators Based on Low-Dimensional Materials

​​​​​​​Study: Emerging low-dimensional materials for nanoelectromechanical systems resonators. Image Credit: Angel Soler Gollonet/

A recent study published in the journal Materials Research Letters provides a detailed overview of the manufacturing, identification, actuation, figures of relevance, and moderating variables of NEMS resonators based on low-dimensional materials.

The research outlines the principles and advancements of these NEMS resonators, as well as promising applications such as optical sensors, nanoelectronics, and quantum detection systems.

Why Are Nanoelectromechanical System (NEMS) Resonators Important?

Nanoelectromechanical systems (NEMS) have tremendous potential in biochemical detection, physiochemical monitoring, and electromagnetic radiation because of their remarkable effectiveness with minimal power consumption. Unlike traditional microelectromechanical systems (MEMS), NEMS incorporate electrical and mechanical functions at the nanometer scale.

The remarkable quantum influence and connectivity effects in NEMS instruments encourage an increasing amount of research from the physics, materials engineering, structural dynamics, and chemistry communities. The last few decades have seen the rise of adaptable NEMS resonators due to rapid breakthroughs in metallurgical processes and manufacturing technology.

Although NEMS resonators have satisfactory resonant frequencies and quality factors, the strict down-scaling requirements confine their incorporation as individual entities for next-generation smartphones, adaptable devices, and intelligent systems.

Low-Dimensional Materials for NEMS Resonators

Low dimensional materials (LDMs), such as one-dimensional (1D) nanomaterials and the two-dimensional (2D) family of nanocrystalline films, have transformed the engineering design of NEMS resonators due to their diverse structures and ability to operate under harsh environments.

To obtain a hanging beam or film structure for NEMS resonators, low-dimensional materials go through a sequence of nanofabrication processes. The material properties of as-fabricated NEMS resonators can be activated in terms of electronic and photonic signals when activated by external light, pressure, electromagnetic fields, and magnetic currents.

Several applications of NEMS resonators based on low-dimensional materials have been reported to date, including robotic detectors, biological actuators, nanoelectronics equipment, and quantum systems.

Although a few previous studies have outlined the advancement of NEMS resonators, they have only focused on 2D materials-based NEMS detection. As a result, a high-level review of NEMS resonators that focuses on the growth of the entire low-dimensional material system is extremely necessary.

Highlights of the Current Study

In this review, the researchers outlined the traditional fabrication procedures, working processes, physical parameters, and detection techniques of NEMS resonators and their principal control variables. The advancements in the manufacturing of NEMS resonators from various low-dimensional materials and their nanocomposites were also discussed.

In addition, the effects of crucial variables such as film thickness, operational conditions, and architecture on adjusting resonant frequencies, quality factors, and potential dissipation of resonators were analyzed.

The researchers concluded by highlighting the current obstacles and proposing some viewpoints that may aid in addressing these roadblocks and promoting the applicability of low-dimensional materials in future versatile and smart NEMS resonators.

Important Findings of the Review

NEMS resonators can optimize operating frequency and responsiveness while consuming minimal energy because of the remarkable physical and optical characteristics at the nanoscale level. As a result, NEMS resonators have emerged as viable candidates for a wide range of next-generation imaging, electronic, and structural applications.

The active substances are the central component of NEMS resonators. The basic requirement of good active material is that it can withstand specific mechanical displacements and have high economic viability for device integration.

Low-dimensional materials have emerged as an enticing replacement for traditional silicon in next-generation NEMS resonators. The advantages of low-dimensional materials for NEMS resonators include tunable band structure, decreased dielectric testing, high strain tolerance, and material reliability in the ultrahigh-frequency (UHF) spectrum.

Future Outlook

Breakthroughs in NEMS resonators have reached an unprecedented level of economic success in the last couple of years, varying from underlying mechanisms to industrial applications, owing to the cooperative relationships of materials engineering, quantum mechanics, nanotechnology, and engineering.

The frequency response of NEMS resonators made of low-dimensional materials has attained the gigahertz (GHz) threshold and is expected to reach the terahertz (THz) level due to their incredibly small mass density.

However, the configuration of the working area, service conditions, system configurations, manufacturing processes, and operational standards are all highly dependent on these NEMS devices. As a result, vital performances vary from device to device, making commercialization extremely difficult.

In this regard, recognizing confronting obstacles and developing innovative, viable alternatives is critical to propelling this groundbreaking field forward.


Ban, S. et al. (2022). Emerging low-dimensional materials for nanoelectromechanical systems resonators. Materials Research Letters. Available at:

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Hussain Ahmed

Written by

Hussain Ahmed

Hussain graduated from Institute of Space Technology, Islamabad with Bachelors in Aerospace Engineering. During his studies, he worked on several research projects related to Aerospace Materials & Structures, Computational Fluid Dynamics, Nano-technology & Robotics. After graduating, he has been working as a freelance Aerospace Engineering consultant. He developed an interest in technical writing during sophomore year of his B.S degree and has wrote several research articles in different publications. During his free time, he enjoys writing poetry, watching movies and playing Football.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ahmed, Hussain. (2022, September 23). Reviewing NEMS Resonators Based on Low-Dimensional Materials. AZoNano. Retrieved on July 22, 2024 from

  • MLA

    Ahmed, Hussain. "Reviewing NEMS Resonators Based on Low-Dimensional Materials". AZoNano. 22 July 2024. <>.

  • Chicago

    Ahmed, Hussain. "Reviewing NEMS Resonators Based on Low-Dimensional Materials". AZoNano. (accessed July 22, 2024).

  • Harvard

    Ahmed, Hussain. 2022. Reviewing NEMS Resonators Based on Low-Dimensional Materials. AZoNano, viewed 22 July 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.