Posted in | News | Nanomedicine | Nanoanalysis

Novel 2D Ultrasound-Responsive Antibacterial Nanosheets Effectively Address Bone Tissue Infection

A research team led by Professor Kelvin Yeung Wai-kwok from the Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong (HKUMed) has invented a non-invasive and non-antibiotics technology to effectively reduce methicillin-resistant Staphylococcus aureus (MRSA) infection in bony tissue.

Illustration of neutrophil membrane nanosheets releasing reactive oxygen species and tracking MRSA bacteria. Image Credit: HKU

​​​​​​​The novel antibacterial nano-sheets can release a substantial amount of reactive oxygen species (ROS) subject to ultrasound stimulation. With the engulfment of neutrophil membrane (NM), the nano-sheets are able to actively capture the MRSA bacteria deeply seated in bony tissue and effectively eliminate 99.72% ± 0.03%.

The outcome has been published in Advanced Materials ("Realizing Highly Efficient Sonodynamic Bactericidal Capability through the Phonon–Electron Coupling Effect Using Two-Dimensional Catalytic Planar Defects").


Bone infection, namely osteomyelitis, is an infection happened in bone or bone marrow caused by bacteria, fungi, or other microorganisms. The common causative pathogenic organism is MRSA. Severe infections can put patients at the risk of amputation or even induce life-threatening sepsis.

In clinical practice, the treatment of bone tissue infection typically involves antibiotics and surgical debridement to remove the infected bone or tissue. However, excessive use of antibiotics not only compromises the host’s innate immune function, but may also inevitably induce the emergence of drug-resistant pathogens.

Recently, phototherapy, whatever it is photodynamic or photothermal therapy, has been applied as an antibiotic-free strategy to tackle bacterial infections. However, conventional phototherapy is unable to address the deep tissue infection such as bone due to its limited penetration power. Therefore, an alternative antibiotic-free strategy harnessing the penetration power of ultrasound to human tissues is considered.

Research Method and Findings

The HKUMed research team has invented a new two-dimensional (2D) sonosensitiser, namely Ti3C2-SD(Ti3+) nano-sheets (nano sheets). Compare with the conventional sonosensitiser arranged in zero-dimension, in which the efficiency of ROS generation is limited.

The innovative 2D sonosensitiser containing an abundance of planar catalytic sites can effectively generate a substantial amount of ROS when it is triggered by ultrasound signal. After decorated with neutrophil membrane (NM), the NM-Ti3C2-SD(Ti3+) nano-sheets (NM-nano-sheets) are able to actively track down the MRSA bacteria in bony tissue subject to ultrasound stimulation.

In animal model, the novel nano-sheets have eliminated the MRSA bacteria in bone more than 99.72% in, whereas the antibiotics therapy (Vanco) is ineffective. Furthermore, the NM-nano-sheets can also alleviate tissue inflammation and assist bone repair once bony tissue infection has been controlled. In addition, the NM-coated nano-sheets do not present any acute bio-safety issues.

Research Significance

Professor Kelvin Yeung Wai-kwok, remarked, ‘Our design has achieved a qualitative leap in which the ROS catalytic site in sonosensitiser has transformed from zero-dimensional to two-dimensional. This invention can remarkably increase the production of bactericide (ROS). We may also consider applying this invention to the post-operation bacterial infection commonly seen in bone cancer patients or the patients with cystitis and peritonitis in the future.’


Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.