But while scientists and engineers know that at the sub-atomic level weak forces are chiral, how these electrostatic forces can generate a chiral world is still a mystery.
Their work will be published as the cover story in the journal Soft Matter and is published online.
"In this way we are simply letting nature tell us how it would like to be, and we generalize it to many different systems," Olvera de la Cruz says." She and her colleagues report that chirality can only spontaneously arise as a consequence of electrostatic interactions and does not require the presence of other more complicated interactions, like dipolar or short-range van der Waals interactions.
Their model also describes arrangement of DNA mixed with carbon nanotubes. DNA has been shown to form helices around nanotubes, thereby separating the different types of carbon nanotubes into families.
The research findings concur with previous research using microscopy.
"From our predicted helical shapes of DNA wrapped around carbon nanotubes, we found amazing correspondence to those that were recently measured by atomic force microscopy," Olvera de le Cruz says.
The work shows that electrostatics is a pathway for understanding how nature generates helical symmetries. Researchers hope that future work can show how to use simple interactions to generate other symmetries that drive complex phenomena.