New Report Covers Low Power Energy Harvesting Nano-Based Technologies

Reportlinker.com announces that a new market research report is available in its catalogue: Ultra Low Power Energy Harvesting Devices http://www.reportlinker.com/p0259753/Ultra-Low-Power-Energy-Harvesting-Devices.html

Ultra-low power energy harvesters, or micro energy scavengers, are small electromechanical devices which harvest ambient energy and convert it into electricity. Energy scavengers can harvest different types of energies. Solar energy can be harvested with photovoltaic solar cells, thermal energy can be harvested with thermoelectric generators, mechanical energy can be harvested with piezoelectric, electromagnetic or electrostatic converters, and finally, electromagnetic energy can be harvested through RF resonators.

Energy harvesting and power management integrated circuits (ICs) are in a position to enable the commercial rollout of the next generation of low power electronic devices and systems. Low power devices are being deployed for wireless as well as wired systems, such as mesh networks, sensor and control systems, and micro-electromechanical systems (MEMS). Applications include home automation, building automation, industrial process/automated meter reading, medical, military, automotive tire pressure sensors, radio frequency identification (RFID) and others.

Battery maintenance and replacement are often cited as the biggest reason to use energy harvesting. The first markets for these new technologies have been applications where batteries are problematic, such as building and home automation, military and avionic devices, communications and location devices, and transportation.

Wireless sensor systems are emerging as a key technology for future remote environmental monitoring in both internal and external environments. Ultra-low power energy harvesting is an important emerging area of low power technology that can provide energy to wireless sensor networks, utilizing the vibrations inherent in structures, vehicles and machinery to create power or harvest energy, as well as solar or heat or human motions that can drive sensors and switches, eliminating the need for wires and batteries

Ultra-low power energy harvesting, however, is the only current option where long term, "fit and forget," autonomous powering of wireless sensor nodes is the vision. Energy harvesting is a natural complement to ultra-low powering, including wireless mesh sensor networks.

STUDY GOAL AND OBJECTIVES

The coming decade will see the rapid emergence of low-cost, intelligent, wireless switches and wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-nodal communications ranges on the order of meters to tens of meters, and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "sleep" times minimizes energy usage. A case study of a multi-sensor, wireless building management system operating on the Zigbee protocol demonstrates that, even with a one-minute cycle time for an 864ms "active" mode, the sensor module is already in sleep mode for almost 99% of the time. For a 20-minute cycle time, the energy utilization in sleep mode exceeds the active mode energy by almost a factor of three and thus dominates the module's energy utilization, thereby providing the ultimate limit to the lifetime of the power system.

The report reviews the various energy harvesting technologies currently available or under development. These include mechanical (electromagnetic, piezoelectric and electrostatic), light (indoor and solar), thermal, electromagnetic flux, and human power. Each suits only certain application scenarios, and some have yet to produce useful amounts of energy for practical application.

The study identifies and, where possible, describes the main commercial and academic centers of expertise in developing energy harvesting technologies. The emphasis here is on the UK and Europe, although others are identified. Although it is a small sector that is dominated by academics and very small companies, this is an area where Europe leads in practical application as well as technology development. A list of key patents is compiled to show which organizations are claiming related intellectual property in the field.

REASONS FOR DOING THE STUDY

Supplying power to a network of sensor-transmitters has traditionally required expensive wiring installation or routine battery changes. Gathering data from difficult or dangerous-to-reach locations using wired sensors may be impossible and may even compromise the safety of personnel while installing wiring and replacing batteries. A perpetual power source is essential for many wireless sensor network (WSN) applications. Energy harvesting technologies are on the verge of new breakthroughs with energy storage, and they are being paired with ultra-low power chipsets as well as plug-and-play software.

While still in an early phase, energy harvesting devices, which translate abundant sources of energy such as light, heat and mechanical into electrical energy, are rapidly being integrated with wireless sensor technologies. By 2011, there will be 150M to 200M wireless sensors being used in factory automation, process and environmental control, security, medicine, and condition-based maintenance, as well as in defense applications and intelligence gathering. Such wireless sensor systems will:

  • require numerous individual devices (known as nodes or motes) to provide comprehensive monitoring capability;
  • be located in inaccessible places much of the time; and
  • have to operate with long intervals between scheduled maintenance. Periodic maintenance, such as replacing batteries, would clearly increase operating costs, and could be inconvenient, at best, if it required interruption of a continuous process.

There is clearly a need to develop an energy source that can last years with little or no maintenance.

With all these developments, iRAP felt the need to conduct thorough technology, industry and market analyses of ultra-low power energy harvesting for WSNs.

Source: http://www.reportlinker.com/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit