Finite-Bias Spectroscopy Useful to Determine Bilayer Graphene Bandgap

Concurrent control over band gap and the charge carrier density in semiconductors is desirable in photodetectors, highly tunable transistors, and lasers. Bernal-stacked bilayer graphene is a van-der-Waals material that permits tuning the band gap by applying an out-of-plane electric field.  

Finite-Bias Spectroscopy Useful to Determine Bilayer Graphene Bandgap​​​​​​​

​​​​​​Study: Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene. Image Credit: Kateryna Kon/Shutterstock.com

Despite the discovery of tunable band gap, the fabrication of clean heterostructures with electrically tunable band gap is a recent achievement that is applied to confine charge carriers. An article published in  Advanced Electronic Materials discussed gated bilayer graphene with a tunable band gap, characterized by finite-bias transport spectroscopy and temperature-activated transport measurements.

The finite-bias transport spectroscopy helped compare different gate materials and corresponding device technologies, affecting the potential of disorder in bilayer graphene. The graphite-gated bilayer graphene showed a low disorder with no subgap states, leading to tunable band gaps of up to 120 millielectronvolts. 

Tunable Band Gaps in Bilayer Graphene

Graphene is a two-dimensional (2D) crystalline form of carbon, extensively applied in electronics and photonics. The monolayer and bilayer graphene structures have a zero-band gap and are prepared by exfoliation from graphite or by chemical vapor deposition (CVD).

The bilayer graphene existing in the AB or Bernal-stacked form has one-half of the associated atoms lying directly over the lower graphene sheet’s hexagon center, and the other half of the atom lie over another atom wherein the layers are aligned perfectly.

The bilayer graphene with zero bandgaps behaves like a semi-metal where the introduction of the bandgap could be possible via generating an electric displacement field between the two layers. Although Bernal stacked bilayer graphene is a 2D semi-metal, the application of an out-of-plane electric field can transform it into a 2D semiconductor, with an electronic band gap that is proportional to the strength of the displacement field.

Even though the tunable band gap was observed using a scanning tunneling spectroscopy, the subgap states in transport measurements caused by disorder could not suppress the electron conduction completely, making such bilayer graphene devices unsuitable for semiconductor applications.

This drawback was neither solved by the fabrication of double-gated structures based on suspended bilayer graphene nor by bilayer graphene encapsulation by hexagonal boron nitride (hBN). To this end, graphite gates-based fabrication technology permitted a gate-controlled band gap, leading to a true band insulating state in bilayer graphene.

Transport Spectroscopy in Bilayer Graphene

In the present study, the graphite gates-based fabrication was used to introduce a tunable band gap in bilayer graphene that was observed via finite bias transport spectroscopy measurement. The band gaps obtained were in concurrence with the theory and the values obtained from thermally activated transport.

The finite bias transport spectroscopy was used to compare hBN device technologies and double-gated bilayer graphene that allowed to probe hopping-transport due to possible disorder or impurity states resulting in the effective tail and subgap states. The study showed that the gates-based fabrication technology impacted the maximum device resistance.

Moreover, this fabrication technology also impacted the finite bias voltage’s suppressed conductance while measuring the transport through electrostatically gapped bilayer graphene and band gap tunability with the electric displacement field.

The results revealed that the behavior of the graphite gate-based bilayer graphene device was as anticipated through theoretical predictions for ideal bilayer graphene, revealing the semiconducting behavior of the device under an applied electric displacement field.

In a graphite gate-based bilayer graphene device, maximum resistance values of 100 gigaohms were observed in a gapped regime with no subgap energy due to trap or impurity states. However, the gold and silicon-gated devices appeared to be affected by disorder and subgap states.

Hence, the gold-gated device showed high gap-induced resistances where the band gap was reduced in finite bias measurements, while no band gap was observed in silicon-gated devices. The overall results confirmed that the bilayer graphene is explorable in graphite gated BLG/hBN heterostructures, revealing its robustness in unleashing the potential of the tunable 2D semiconductor.

Conclusion​​​​​​​

To conclude, finite-bias transport spectroscopy was demonstrated as a versatile method for characterizing the bilayer graphene’s band gap. The high sensitivity of this transport spectroscopic method allowed the comparative study based on the influence of electrostatic potentials for various gating technologies.

The measurements from different gating technologies indicated that graphite-gated devices, which were a part of the van der Waals heterostructure, outperformed the gold and silicon-gated devices and behaved closely to the theoretical prediction obtained for ideal bilayer graphene.

The band gaps of up to 120 millielectronvolts were achieved in graphite-gated devices with resistances up to 100 gigaohms. These results highlighted the importance of a graphite-based bottom gate for bilayer graphene-based van-der-Waals heterostructures. Moreover, the excellent quality of graphene/ hBN/ bilayer graphene devices was demonstrated in the present work to address the widespread applications of bilayer graphene.

Reference

Icking, E., Banszerus, L., Wörtche, F., Volmer, F., Schmidt, P., Steiner, C., Engels, et al. (2022) Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene. Advanced Electronic Materials. https://onlinelibrary.wiley.com/doi/10.1002/aelm.202200510

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Bhavna Kaveti

Written by

Bhavna Kaveti

Bhavna Kaveti is a science writer based in Hyderabad, India. She has a Masters in Pharmaceutical Chemistry from Vellore Institute of Technology, India, and a Ph.D. in Organic and Medicinal Chemistry from Universidad de Guanajuato, Mexico. Her research work involved designing and synthesizing heterocycle-based bioactive molecules, where she had exposure to both multistep and multicomponent synthesis. During her doctoral studies, she worked on synthesizing various linked and fused heterocycle-based peptidomimetic molecules that are anticipated to have a bioactive potential for further functionalization. While working on her thesis and research papers, she explored her passion for scientific writing and communications.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Kaveti, Bhavna. (2022, August 02). Finite-Bias Spectroscopy Useful to Determine Bilayer Graphene Bandgap. AZoNano. Retrieved on September 15, 2024 from https://www.azonano.com/news.aspx?newsID=39511.

  • MLA

    Kaveti, Bhavna. "Finite-Bias Spectroscopy Useful to Determine Bilayer Graphene Bandgap". AZoNano. 15 September 2024. <https://www.azonano.com/news.aspx?newsID=39511>.

  • Chicago

    Kaveti, Bhavna. "Finite-Bias Spectroscopy Useful to Determine Bilayer Graphene Bandgap". AZoNano. https://www.azonano.com/news.aspx?newsID=39511. (accessed September 15, 2024).

  • Harvard

    Kaveti, Bhavna. 2022. Finite-Bias Spectroscopy Useful to Determine Bilayer Graphene Bandgap. AZoNano, viewed 15 September 2024, https://www.azonano.com/news.aspx?newsID=39511.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.