China's First Zinc Oxide Nanorod Field-Effect Transistor

Recently, zinc oxide (ZnO) nanorod field-effect transistor (FET), the first of its kind as a nano device in China, was successfully fabricated by scientists with the CAS Institute of Microelectronics, Chinese Academy of Sciences (IME).

China's first back-gate ZnO nanorod field-effect transistor

ZnO is a wide bandgap semiconductor and an important multifunctional material. The ZnO nano materials, such as nanowires, nanorods, nanobands and nanorings, attract intense worldwide attention for their unique optical, semiconducting and piezoelectric properties. At present, Chinese scientists in this filed mainly focus their research on material growth and diode development.

A research group headed by Prof. ZHANG Haiying from IME came up with a unique "bottom-up" method for designing and developing nano devices. Through the regular contact photolithography technology, they employed ZnO nanorods as the channel material and fabricated a metal-oxide-semiconductor FET by combining gate oxide and back gate metal, which displayed satisfying results.

Next, Prof. Zhang and her colleagues will further advance the technology in order to develop nanowires with an even smaller diameter and improve the performance of the devices, raising solutions to key problems in practical use.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.