A material cannot get any thinner. Graphene consists of just one layer of carbon atoms. However, that's not the only reason materials scientists are interested in this material: they're primarily fascinated by its extraordinary properties. Linjie Zhi and his Partner Group at the Max Planck Institute for Polymer Research are using chemistry to optimize graphene for various applications.
Almost every biological process involves sensing the presence of a certain chemical. Finely tuned over millions of years of evolution, the body's different receptors are shaped to accept certain target chemicals. When they bind, the receptors tell their host cells to produce nerve impulses, regulate metabolism, defend the body against invaders or myriad other actions depending on the cell, receptor and chemical type.
This is a blog by James Baker, Business Director for Graphene@Manchester. As the government announces further support for the UK’s emerging graphene industry, James Baker from the National Graphene Institute says the emerging concept of a ‘graphene city’ can be a UK model for commercialising new scientific discoveries.
Scientists have taken a large step toward making a fiber-like energy storage device that can be woven into clothing and power wearable medical monitors, communications equipment or other small electronics.
Graphene, a one-atom-thick form of the carbon material graphite, has been hailed as a wonder material — strong, light, nearly transparent, and an excellent conductor of electricity and heat. But a number of practical challenges must be overcome before it can emerge as a replacement for silicon and other materials in microprocessors and next-generation energy devices.
Scientists studying graphene’s properties are using a new mathematical framework to make extremely accurate characterizations of the two-dimensional material’s shape.
Almost every biological process involves sensing the presence of a certain chemical. Finely tuned over millions of years of evolution, the body’s different receptors are shaped to accept certain target chemicals. When they bind, the receptors tell their host cells to produce nerve impulses, regulate metabolism, defend the body against invaders or myriad other actions depending on the cell, receptor and chemical type.
Three-dimentional (3D) nanoporous graphene with preserved 2D Dirac electronic characters was successfully synthesized by Dr. Yoshikazu Ito and Prof. Mingwei CHEN at Advanced Institute for Materials Research (AIMR), Tohoku University.
The University of Manchester is pleased to announce that the acquisition, by Versarien plc, of 85% of the shares in its graphene subsidiary, 2-DTech Limited, has today completed.
Researchers at University of California, Santa Barbara, in collaboration with Rice University, have recently demonstrated a rapid synthesis technique for large-area Bernal (or AB) stacked bilayer graphene films that can open up new pathways for digital electronics and transparent conductor applications.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.