Great excitement at Kiel University: As the DFG (German Research Foundation) announced today (Thursday, May 21), it will continue to support the research on molecules which function like machines with another 8.9 million EUR. This funding will allow the scientists in Germany's northernmost state to develop new engineering techniques for building tiny machine-like molecules over the next four years.
Scientists from IBM Research, the University of Melbourne and the University of Queensland have moved a step closer to identifying the nanostructure of cellulose – the basic structural component of plant cell walls.
Strategic News Service (SNS) is proud to announce that Nanotech Biomachines has been selected as a 2015 FiReStarter company to be featured at the 13th annual Future in Review (FiRe) conference. Described by The Economist as "the best technology conference in the world," FiRe features global thought leaders in technology and the global economy, including Elon Musk, Craig Venter, Michael Dell, Vint Cerf, Leroy Hood, Patti Grace Smith, Mark Hurd, Paul Jacobs, and many others.
This BCC Research report provides detailed product analyses within health and wellness subsegments to overall industry trends in order to quantify and qualify the market for drug products for treating various disease conditions in both men and women. The applicability of specific types of nanoparticles for specific applications is also discussed. CAGR projections are given from the period 2014 through 2019.
Using nature for inspiration, a team of Northwestern University scientists is the first to develop an entirely artificial molecular pump, in which molecules pump other molecules. This tiny machine is no small feat. The pump one day might be used to power other molecular machines, such as artificial muscles.
Attacking the perennial problem of systemic toxicity from typical chemotherapy treatments, Dartmouth investigators, led by Barjor Gimi, PhD, have engineered therapeutic cells encapsulated in nanoporous capsules to secrete antitumor molecules from within the tumor.
The Science
Whether inside algae converting biomass to fuels or human cells responding to radiation exposure, proteins change their shape via atomic motions to perform a specific function. Today these shape-changing processes are still difficult to measure and understand. Scientists recently determined three classes of atomic motion using neutron scattering coupled with computational simulations.
Researchers at the MicroNano Research Facility (MNRF) have built the one of the world’s first electronic multi-state memory cell which mirrors the brain’s ability to simultaneously process and store multiple strands of information.
Wearable E-skin that can measure heart rate and blood pressure, and paper diagnostic machines the size of a credit card that can give instant readings on blood and saliva samples are two new bio-sensing technologies presented at Elsevier's 4th International Conference on Bio-Sensing Technology in Lisbon, Portugal on 12 May 2015.
Physicists of the University of Basel and the Swiss Nanoscience Institute were able to show for the first time that the nuclear spins of single molecules can be detected with the help of magnetic particles at room temperature. In Nature Nanotechnology, the researchers describe a novel experimental setup with which the tiny magnetic fields of the nuclear spins of single biomolecules - undetectable so far - could be registered for the first time. The proposed concept would improve medical diagnostics as well as analyses of biological and chemical samples in a decisive step forward.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.