Posted in | News | Nanosensors | Nanoanalysis

SAW Instruments Unveils New sam5 Biosensor

SAW Instruments GmbH has today launched its unique sam5 biosensor instrument for advanced real-time biomolecular interaction and kinetic studies, at Biotechnica, Hannover, 5-7 October.

The sam5 is a peerless biosensor utilising Surface Acoustic Wave technology for the label-free detection of real-time binding and structural events.

Using a proprietary bimodal measurement technique, this platform is uniquely able to measure conformational changes in membranes and vesicles, as well as more traditional cellular samples. Furthermore, the sensor chips integrate five independent sensor elements for simultaneous analysis of different species or parameters and parallel references. As a result, the sam5 matches the biosensor needs of a much broader range of researchers than existing systems, whilst also providing the precision required to drive conventional studies forward.

sam5 biosensor

As part of the European launch, Dr Thomas Gronewold from SAW Instruments will be presenting a snapshot of the sam5 instrument with applications data, at the Innovation Forum on Wednesday 6th October at 2.45-3.10pm entitled “sam5 biosensor – a new solution for simple and robust label-free biomolecular interaction analyses in biotech and academia” (Hall 9 – Forum 2, Stand G61).

SAW are also exhibiting at Biotechnica on stand A36, Hall 9, and are running personal hands-on demonstrations of the new sam5.

Surface Acoustic Wave technology is based on a specific acoustic wave mode and its particularity to propagate confined to the surface of a material. Each surface has typical inherent properties affecting the wave as it travels across the surface of the material being analysed. Thus, the nature of the surface in question, and therefore any changes to it, can be assessed by sensors monitoring the behaviour of the wave as it propagates across the surface. In particular, changes in mass result in alterations to the propagation velocity of the wave, whilst viscoelastic and conformational characteristics additionally influence wave amplitude. The technology developed and employed by SAW instruments is capable of accurately interpreting this information in order to provide real-time readouts, measuring binding and conformational changes in the samples through which the wave passes.


Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.